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ANALYSIS OF THICK RECTANGULAR PLATES LAMINATED

OF BIMODULUS COMPOSITE MATERIALS

* 1• :1
C.W. Bert , J.N. Reddy , V. Sudhakar Reddy , and W.C. Chao

University of Oklahoma , Norman, OK

A mi xed finite-element analysis is presented for static be-

havior of rectangular plates having finite transverse shear moduli

and different elastic properties depending upon whether or not the

fiber-direction strains are tensile or compressive . As a benchmark

to evaluate the vafldlty and accuracy of the finite—element analysis ,

a closed-form solution is presented for the particular case of an

unsymmetric-cross-ply p’ate having freely supported edges and sub-

jected to a sinusoidally distributed normal -pressure loading.
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Nomenclature

= stretching stiffnesses for transversely isotropic and cross-

ply orthotropic plates

a,b = plate dimensions in x and y directions

B~B1~ 
= bending-stretching coupling stiffnesses for transversely

isotropic and cross-ply orthotropic plates

Crs = coefficients defined in Eqs. (15)

= bending stiffnesses for transversely isotropic and cross-ply

orthotropic plates

d
~ 

= 
~

( )/~x

= compressive and tensile Young ’s modu li for transversely

isotropic bimodu lus material

Ef~
Em = fiber and matrix Young ’s moduli

E14E2 ,E3 = Young ’s moduli in directions x ,y,z

F~ = generalized force components defined in Eqs. (20)

G13,G23 = longitudinal-thickness and transverse—thickness shear moduli

of orthotropic material

Gzc~Gzt 
= thickness-shear rnoduli for transversely isotropic bimodulus material

h = total thickness of plate

K = shear—correction coefficient for transversely isotropic plate

K~,K5 = shear-correction coefficients for cross-ply orthotropic plate

= matrix coefficients defined in Eqs. (20)

1’ Lrs = linea r differential operators defined in Eqs. (8)r M1,N1 = stress coup les and inp lane stress resultants
Interpolation function at node I

n number of nodes per element

~ de

D~~t

~/
— I — — — ——--— —-  - 

— — -
- 

~~~~~~~~~~~~~~——~~~~~~ -~~~~
--_ . —— -~~ - - . 

.— —-—- ,—-,•,- 
_ 4__~~~._.__ _ ____ ~ - _ .__ . ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~



- - —
~
-----

~

---—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~
- -—  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

3

~c’~t 
= compressive and tensile plane-stress-reduced sti ffnesses for

isotropic bimodulus material

= thickness-shear stress resultants

= ‘2
~~ C~~t~’ ~ 

-

= plane-stress-reduced stiffnesses for orthotropic bimodulus material

q,q0 
= normal pressure and its peak value

s~sjj  = thickness-shear stiffnesses for transversely isotropic and cross-

ply orthotropic plates

= matrix coefficients defined in Eqs. (20)

U,V ,W = mldplane displacement coefficients (amplitudes of u°,v°,w°)

u,v,w = displacements in x,y,z directions

= midplane displacements in x,y,z directions

Vf~V = fiber volume fraction and effective fiber volume fraction

X V  = bending-slope coefficients (amplitudes of 
~
‘x”~y~

x,y,z = plate coordinates in longitudinal , transverse, and downward

thickness directions

Z,Z,,Z~ = z,~/h, z~~
/h, Z~y/h

z,.~ 
= neutral-surface position for isotropic square plate

Znx~Zny 
= neutral-surface positions associated with t~=O and c~~O

= ir/a , u /b

= strain component at arbitrary location and at midplane

= curvature component
= fiber and matrix Poisson s ratios

v12,v23 = major (longitudinal-transverse) and transverse-thickness Poisson’s

ratios

a1 = stress component



- ‘1

4

= typical variable in general and its value at node I

= bendi ng slopes in xz and yz p lanes

~ ~‘x 
= a( )/ax

Subscripts:

i,j = 1 ,2,6 contracted indices

k = l(t or tension), 2(c or compress ion)

£ = layer number

Introduction

The increasing use of composite materials in structures has led to the

requirement of more realistic mathematical modeling of the material behavior

and incorporation of this more realistic model into structural analyses. It

has been found that certain fiber-reinforced materials , especially those with

very soft matrices (for example, cord-rubber composites), exhibit quite dif-

ferent elastic behavior depending upon whether the fiber-direction strain is

tensi le or compress ive 1 3 . As a first approximation , the stress-strain be-

havior of such materials is often represented as being bilinear , wi th differ-

ent slopes (elastic properties) depending upon the sign of the fiber-direction

strain. Such a material is called a bimodulus composite material , and it has

been shown that the fiber—governed syninetric-compliance model proposed in

Ref. 4 agrees well wi th experimental data for several materials with drastically

different elastic properties in tension and compression .

To the best of the present investigators ’ knowledge, the only prev ious
analyses of plates laminated of bimodulus composite materials are all limi ted

to thin plates. Jones and Morgan5 considered cyl i ndrical bending of a finite—

width cross—ply strip; Kincannon et al.6 considered cross-ply elliptic plates .

Rectangular plates were treated by Bert et al.7 using a closed-form solution 4 

~~~~~~~~~~~~~~~
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and by Reddy8 using mixed finite elements.

Apparently the only previous analyses involving thick plates of bimodulus

material are those of Shapiro9 using a stress-function elasticity approach for

Isotropic circular plates and of Kamiya ’° using an energy approach for cyl i ndrical

bending of finite-width isotropic strips.

Of course , for thick plates laminated of ordinary (not bimodulus) materials,

there have been a number of analyses , such as those of Whitney ’’ , Whitney and
Pagano’2, and Turvey’3 , for example.

The analyses presented here are believed to be the very first analyses of

thick plates that are finite in two directions and laminated of bimodu lus com-

posite materials.

Formula tion

The basic theory of laminated anisotropic thick plates used by Whitney

and Pagano’2 is an extension of Reissner’s theory for isotropic plates1’~. It

is based upon the following assumed displacement field:

u(x,y,z) u°(x ,y) + z
~P~

(x
~
y)

v(x,y,z) = v°(x ,y) + ~~~~~~ (1)

w(x,y,z) = w°(x ,y)

Here x ,y are rectangular coordinates in the plane of the plate , z is the

thickness-direction coordinate measured downward from the midp lane of the

plate; u,v,w are the di sp lacements In the respec ti ve x ,y,z directions ; u0

are the corresponding midplane displacements; and and are the

slopes in the xz and yz planes due to bending only.

Neglecting body forces, body moments , and surface shear ing forces , the

equations of equilibrium can be written as

— - _ _ _  

~~ 
~~~~~~~~~~~~~~~~~~~~ •. ~~~~ t -  .. ~~~ 
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N + N  = 0 N + N  06

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2)

M i,x +M 6,y
_ Q

x = O

Here q is the normal pressure, ~ )~~ 
denotes a( )/ax,and

h/2
(N.,M4) = (l ,~)a. dz (11 ,2,6)

H ‘ ‘  —h/2
(3)

-
~~~~ h/2

• t- ~~ 
~~~~~~ 

= J (a~ ,ci~ ) dz
H -h/2

Here h is the plate (laminate) thickness,and the so-called contracted sub-

script notation is employed to denote the stress components . Thus , a~ and

~ 2 are inpiane normal stresses in the x and y directions ; a6 is the in-

plane shear stress associated wi th the x ,y axes ; and a~ and a~ are the thick-

ness shear stresses in the yz and xz planes .

Assuming that the only plane of symetry existing is in the plane of the

plate, the plate constitutive relations can be written as

= 1A 1~ ~~~~ (i ,j=l ,2,6)
(.MiJ L8u DIJJIK j J

(4) -]• I~yl 
= 

1K~
St.t, KL+ Ks S&.51J~.1 ~xJ LK~KSS~5 K

~
Sssjlcs

The A1~~ B13 , D1~~ S~ are the respective inplane, bending-inplane coupl ing ,

bending or twisting, and thickness-shear stl ffnesses defined as follows :
h/2

(A .,B ,D1 ) = J (l ,z~z2)Q~ kt dz (1 ,j=l ,2,6)ij ij ~ — h/2
(5)

h/2
S1 = I 

~i k 
dz (1 ,j—4,5)

_-

~ 
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Here 
~ljkt 

denotes the plane-stress reduced stiffness, where ij refers to

the position in the stress—strain-relation array (analogous to Eqs. (4)), k

refers to the sign of the fiber-direction strain (1 ~ + , 2 ‘
~
. - ) ,  and 2. iS

the layer number.

The linear equations for the kinematics of deformation are

K i  = 
~x,x ~ ‘~2 = ~y y ~ K 6 = 

~x,y 
+ 
~
‘y,x (6)

= w ~~+ P ~ ;

Equations (l)-(6) plus those of Appendix A consti tute the appropriate

theory, in differential-equation form, for the class of plates considered

here (linear , thick , laminated , anisotropic , bimodulus).

Closed-Form Soluti on for Cross-Ply Laminate

Here we consider the particular case of a cross-ply laminate , i.e., one

in which some of the layers are oriented along the x axis and the remainder

along the y axis. Then the terms with subscripts 16 , 26, and 45 vanish from

the syrnetric arrays in Eqs. (4). For bimodulus -material cross-ply lami nates ,

Eqs. (5) integrate as indicated in Appendix A and depend upon the neutral-

surface locations , Z,~ and Z~,,, as wel l as the

If it Is tentatively assumed that the neutral-surface locations are in-

dependent of x and y, Eqs. (2), (4), and (6) can be combined to yield the

following governi ng equations in terms of the mldplane dIsplacements (u°,v°,w°)

and bending slopes (q,~, and

(Lrs]{u
0IvO~w

O44ly)*x
)I = {Ø,0,q,0,Q}T (7)

— V M S S ~~~~~ — — - — — — - — - ,. -

_____________________________________________________________ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - • .~~ 
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- I where [Lrs] is a symetric linear differential operator matrix wi th the follow-

ing elements:

= A,,d~ + A66d~ ; L i2 = (A 12+A66 )dxdy ; Li~ 
= 0 ;

= (B12 +B66 )dxdy ; Li5 = B11 d~ + B66 d~ ; L2~ = A66 d~ + A22d~ ;

L23 = 0 ; L2~ = B66d~ + B22d~ ; L25 = L1~ ; L33 = — K~S55 d~ —

Ks., S~~d~ ; L3~ = — K1~S~+d~ ; L35 = - K5 S55 d
~ 

;
• 

L 1L 4 = D66d~ + D22 d~ - K~S~ ; L~~ = (D i2+D66~
dxdy ;

L55 = D11 d~ + D66 d~ - K~S55 ; d~ = a( )/~x ; dy = a( )/ay

For a plate hinged flexurally, but free to move in a direction normal to

each edge, the boundary conditions are

N,(O,y) = N1(a,y) = 0 ; u°(x ,0) = u°(x ,b) = 0

v°(0,y) = v°(a,y) = 0 ; N2(x,O) = N2 (x, b) = 0

w°(0,y) = w°(a,y) = 0 ; w°(x ,0) = w°(x ,b) = 0 (9)

= is~(a~~) = 0 ; M2(x ,0) = M2(x,b) = 0

M,(O,y) = M,(a,y) = 0 ; 
~~

(x ,O) = 

~~~~~ 
= 0

The criteria that the neutral-surface locations associated with the x

and y directions remain constant are as follows :

+ Znx K l = 0 ; + Zny K 2 = 0 (10)

or
0 0

• z = — C1/K i = - U / i~nx ,x x ,x (11)

~~~ 
= - C~~/K 2 = - v ’

~y/iIiy ,y

_ _ _ _ _ _ _-
~~~~~~~~ 

_ _ __ •_ • t_~i~~
_ _ . • __ __ 
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The normal-pressure loading is taken to be sinusoidally distributed as

q = q0 sin aX SIfl ~y (12)

where a u/d , u/b.

The governing equations (7) wi th pressure distributi on given by Eq.

(12), boundary conditions (9), and neutral-surface location criteria (11) are

all satisfied exactly in closed form by the following set of functions .

u0 = U cos ax sin 8y

V
0 

= V sin ax 005 6y

w° W sin ax sin By (13)

II)~~~Y S1fl cLX COS~~Y

p~~~X cos ctx sin~~y

Then differential equation set (7) reduces to algebraic form as

follows :

[Crs){U~V~W~Y IX}
T 

= {O ,0,q0,O,0}
T (14)

Here [Crs] is a symmetric matrix wi th coefficients

C,, = A 11ct 2 + A66~
2 ; C12 = (A 12+A66)ct~ ; C,3 = 0

C,~ = (B,2+866)a8 ; C,5 = B11a 2 + B6682 ;

C22 = A66a~ + A22~
2 ; C23 = 0 ; C2~ = B66ci2 + B22~

2 ;
(15)

C25 = C1~ ; C33 = K~S55cz2 + ~~~~~ ; C3L, = K~S~L,$ ;

C35 = K~S55cz ; C~ = D66a2 + 02282 + K~S~ ;

C~5 = (D 12+D66)a8 ; C55 = D~~a2 + D66 a2 + K~S55 

~~~~~~~~~~~~~ - - “~~ .• - - - - - - - 

- 
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Finite-Element Analysis

Here we present a mi xed finite-element model associated wi th Eqs. (1)-

( 4 ) governing the bending of laminated , thick composite plates . The word

“mi xed” implies that independent approximations are used for all of the

variables , u Iv~
w
~~x~ 

and p~,. Using the thin—pla te equations of layered

composite plates , and treating

w ,
~~

+
~P~~

= O  , w ,~~+ q ~~~ 0 (16)

as constraints , Reddy’7 presented a variational formulation of Eqs. (1)-

(4) . That i s , the thick- plate theory can be interpreted as one resulting

from the thin-plate theory by treating the slope-displacement relations as

constraints . The Lagrange multipliers associated with these constraints are

found to be the thickness-shear stress resultants , 
~ 

and Q~. The model

described here is essentially the same as in Ref. 17. k

Suppose that the region occupied by the plate is given by ~X(—h/2 ,h/2),

where ~ denotes the mi ddle plane (x-y). As noted earlier , the thickness

direction is integrated into the coefficients , ~~~ B13
, and D~~. Hence, we

divide the plate into a finite number of elements , denoted by 
~e 

Over

each element %, we assume that the variables u ,v ,w ,~~, and j, are interpolated

by expressions of the form

= (17)

where q
~ 

denotes the restriction of a typical variable to 
~e’ 

4~ its value

at node I (of element 
~e~’ 

and N
i 
are the linearly independent interpolation

• functions associated wi th the typical element. Since we are concerned here

wi th rectangular plates , the typical element is chosen to be the four-node

(n=4) quadrilaterfal element of the serendipity family.

• •— - . . — - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

_____ ______________ ______ • - - - -~~~~~~~~~- - • -—--—— ~~~~~~~~~~~~~~~~~~~~~~~~
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Substituting expressions of the form (17) for u ,v ,w ,~~, and into

I the total potential energy associated with the case of a cross-ply l aminate

~ J {A,i(~~)
2 

+ A66(~~)
2 

+ 2A 12 ~M + 2A66 }~ 
+ A22(~~)

2

+A  ~~~~~~~~~ —-~~+ B  
_-
~ )+ B  (~ L+~ Y~)(_— ~~+ __1)

66 
~y 3x ~ ax 12 ay 66 ay ax ay ax

a
+ -~~(B,2- + Baz-51-) + -~~-(B 11~~ + ~~~~~ ÷ B66(~~~ 

+ 1)( . + 1)

• + -~~(B,2~~ + B22~~~~~~) 
+ D,,(-~—~-)

2 
+ 066(~~ X )

2

+ 2D,2-~~ 
-

~~~~~~ 
+ 2066 

~7 -~~

-

~~~

- ÷ D22(-~~-)
2 
÷ D66~~~~~~~

2 
+ A 55(~~- +

+ A~~(~~~+ ~~)
2
} dx dy + J qw dx dy (18)

we obtain , for each element ,

= {Fe} (19)

where {~e} = {u~,v7,w~~4i~1,~~1 }
T, and

K~ = A 11s~~ + A66s’~(., K~~ = A 12s~~ + A 66S~~

K~ = 0, K~ = BiiS~~ + B66S~
’
~~ K~ = B,2S~~ + B66S~~

= A22S~
’
~ + A&GS~~ K~ = 0, K~ = B66S~~ + B,2S~

’

= B66s~ + ~~~~~~ K~ = A ssS~~ + ~~~~~~~~~~~~~~~~ Kfl =

1 K~ = 
~~~~~~~~~~~~~~~~ K~ = Dll S~J 

+ D66S~ +

• 
K~ = D,2S~~ + D66S~~, K~ D6~5~ . + D22S~

’
~ + A~+S?~

= J qN 1 dx dy, F~ = 0, a = 1 ,2,4,5, Aa8 = K K 8 S 8, (a ,84
,5)

e

- 
= f N 1~~ ~~~~ dx dy (~ ,no ,x ,y), s~ = (20) *

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -

• - - 
Ij_1II_l_ •- _,~_-.~• __ ._ .V.~~~. . :.. ~P ~~~~~~~~~ - — s  - • - •  •~~ — — ~~.~~~_ - - —
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The element equations (19) are assembled in the usual manner, and

boundary conditions are applied before solving the equations.

Numerical Results ~- 
-

As the first example , we take the case of a homogeneous (single-layer)

plate of transversely isotropic bimodulus material. The plane of isotropy

is assumed to coinc~ide with the midplane of the plate , and the inplane

Poisson ’s ratio is assumed to be zero. Then the closed—form solution reduces

to the simpl i fied form presented in Appendix B. Numerical results are pre-

sented in Tables 1 and 2.

Table 1. Comparison of Neutral—Surface Locations for
Transversel y Isotropic Square Plate

Neutral-Surface Location Z

Et/Ec=Gzt/Gzc G /E =O .l 0.3 0.5

Exact Closed-Form Solut ion :

0.5 - 0.08578 - 0.08578 - 0.08578
1.0 0 0 0
2.0 + 0.08578 + 0.08578 + 0.08578

Simplified Approximate Solution :

0.5 - 0.08579 - 0.08579 - 0.08579
1.0 0 0 0
2.0 + 0.08579 + 0.08579 + 0.08579

— Mixed Finite-Element Solution :

0.5 - 0.08578 - 0.08578 - 0.08578
1.0 0 0 0
2.0 + 0.08578 + 0.08578 + 0.08578 

V

- - - 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—

~~~
-.



Tab le 2. Compar ison of Max imum Deflections for Transverse ly
Isotropic Square Plate (h/b=0.l, K2~5/6)

Dimensionless Defl ection WE~h3/q0b~
Et/Ec=G t/G Gzc/E =O

~
l 

— 

0.3 0.5

Exact Closed-Form Solution :

0.5 0.05348 0.04774 0.04660
1 0  0.03688 0.03283 0.03201
2.0 0.02674 0.02387 0.02330

Simpl i fied Approximate Solution :

0.5 0.05004 0.04660 0.04591
1.0 0.03445 0.03202 0.03153
2.0 0.02530 0.02342 0.02296

Mi xed Finite-Element Solution :

0.5 0.05329 0.04743 0.04626
1.0 0.03675 0.03261 0.03178
2.0 0.02664 0.02371 0.02313

It is noted that the middle-surface location is independent of and

G
~t. 

The agreement among the results obta i ned by all three solutions is quite

good .

As examples of some actual bimodulus materials, aramid-cord/rubber and

polyester-cord/rubber are selected . The material properties used are listed in

• Table 3. The data are based on test results of Patel et al.3, using the data-

reduction procedure of Model 2 in Ref. 4, except for the thickness-shear moduli,

which were estimated as explained in Appendix C.

-

~

- -- - -- ---- —~~~~~~~-•- -~~~~~- -
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Table 3. Elastic Properties for Two Tire-Cord/Rubber , a
Unidirectional , Bimodulus Composite Materials

Aramid/Rubber Polyester Rubber
Property and Units k 1  k 2  k=l k=2

Longitudinal Young ’s modulus , GPa 3.58 0.0120 0.617 0.0369
Transverse Young ’s modulus , GPa 0.00909 0.0120 0.00800 0.0106

Major Poisson ’s ratio, dimension 1ess~’ 0.416 0.205 0.475 0.185
Longitudinal-transverse shear modulus , GPaC 0.00370 0.00370 0.00262 0.00267

• Transverse-thickness shear modulus , GPa 0.00290 0.00499 0.00233 0.00475

aFiber..direction tension is denoted by k=l , and fiber-direction compression by
~k=2.L/
lt is assumed that the mi nor Poisson ’s ratio is given by the reciprocal
relation.

C
1~~ is assumed that the longitudinal—thickness shear modulus is equa l to this
one.

Numerical results for single~•layer rectangular plates wi th the fibers

oriented parallel to the x axis are given in Table 4 , while those for cross-

ply plates (stacking sequence as described in Appendix A) are listed in Table

5.
As can be seen in Tabl es 4 and 5, the agreement between the closed-form

and finite—element results for both neutral-surface position and defl ection

is extremely good. Thus, it can be considered that the finite-e lement analysis

has been soundly validated , and can now be used for more complicated combina-

tions of loadi ng, geometry, and boundary conditions not amenable to closed-

form solutions.

It is noted that the aramid—rubbe r plates , in both the single-ply and

cross-ply cases, have noticeably larger values of than the polyester-

rubber plates. This result is undoubtedly due to the more pronounced bi-

modulus effect In the fiber-direction Young ’s modulus of the aramid-rubber.

L .
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Table 4. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Single-Layer 0° Aramid-Rubber
and Polyester-Rubber , as Determined by Two Different
Methods (Thickness/Width , h/b=0. lt;K2 5/6)

Aspect Zx Zy WE22~h3/q0b~
Ratio C.F~ F.E~ C.F’

~ F.E~ C.F’~ F.E~
Aramid-Rubber:

0.5 0.4453 0.4454 - 0.3304 - 0.3007 0.002544 0.002750
0.6 0.4452 0.4452 - 0.2941 - 0.2734 0.004560 0.004827
0 . 7  0 .4447  0 . 4 4 4 7  - 0.2564 - 0.2419 0.007393 0.007712
0.8 0.4440 0.4440 - 0.2220 - 0.2117 0.01105 0.01140
0.9 0.4431 0.4431 - 0.1923 - 0.1846 0.01545 0.01582
1.0 0.4420 0.4420 - 0.1671 - 0.1614 0.02046 0.02083

1.2 0.4394 0.4394 - 0.1285 - 0.1250 0.03160 0.03193
1.4 0.4363 0.4363 - 0.1015 - 0.09919 0.04313 0.04335
1.6 0.4328 0.4329 - 0.08228 - 0.08070 0.05406 0.05416
1.8 0.4292 0.4294 - 0.06838 - 0.06724 0.06390 0.06388
2.0 0.4253 0.4254 - 0.05813 - 0.05727 0.07250 0.07236

Polyester-Rubber:
0.5 0.3044 0.3045 - 0.1597 - 0.1234 0.001529 0.001971
0.6 0.3044 0.3045 - 0.1538 - 0.1245 0.002652 0.003265
0.7 0.3042 0.3044 - 0. 1426 - 0.1198 0.004283 0.005075
0.8 0.3039 0 3041 - 0.1299 - 0.1124 0.006517 0.007487
0.9 0.3035 0.3037 - 0 . 117 4  - 0.1041 0.009421 0.01055
1.0 0.3029 0.3031 - 0.1061 - 0.09586 0.01303 0.01430

1.2 0.3015 0.3018 - 0.08728 - 0.08111 0.02223 0.02367
1.4 0.2999 0.3001 - 0.07329 - 0.06941 0.03348 0.03492
1.6 0.2979 0.2982 - 0.06296 - 0.06042 0.04574 0.04703
1.8 0.2957 0.2960 - 0.05528 - 0.05356 0.05793 0.05897
2.0 0.2934 0.2936 - 0.04959 - 0.04828 0.06925 0.07003

*C F  denotes closed-form solution ; F.E. signifies finite-element solution .
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Table 5. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Two-Layer Cross-Ply Aramid-
Rubber and Polyester-Rubber , as Determined by Two Different
Methods (Thickness/Width , h/b=0.l; K 2 5/6)

Z Z WE22 h3/q b~Aspect c o
Ratio C.F1

~ F.E~ C. F’~ F.E’
~ C.F~ F.E~

Arami d-Rubber:

0.5 0.4433 0.4431 - 0.06343 - 0.06223 0.002472 0.002576

0.6 0.4427 0.4426 - 0.05478 - 0.05443 0.004388 0.004518
0.4418 0.4418 - 0.04794 - 0.04778 0.007072 0.007220

0.8 0.4407 0.4407 - 0.04247 - 0.04237 0.01054 0.01070

0.9 0.4396 0.4396 - 0.03803 - 0.03795 0.01475 0.01490

1.0 0.4384 0.4384 - 0.03437 - 0.03430 0.01957 0.01972
• 1.2 0.4356 0.4356 - 0.02883 - 0.02860 0.03043 0.03054

1.4 0.4326 0.4325 - 0.02470 - 0.02477 0.04185 0.04190

1.6 0.4292 0.4292 - 0.02160 - 0.02165 0.05282 0.05280

1.8 0.4257 0.4256 - 0.01922 - 0.01923 0.06277 0.06264

2.0 0.4219 0.4219 - 0.01735 - 0.01734 0.07151 0.07137
Polyester-Rubber:

0 . 5  0 .3650  0.3 6 5 2  — 0.1285 - 0.1256 0.002539 0.002732

0.6 0.3644 0.3646 - 0.1178 - 0.1164 0.004527 0.004772

0.7 0.3638 0.3639 - 0.1097 - 0.1089 0.007288 0.007575

0.8 0.3631 0.3631 - 0.1036 - 0.1031 0.01078 0.01109
• 0.9 0.3622 0.3622 - 0.09886 - 0.09859 0.01487 0.01519

1.0 0.3613 0.3613 - 0.09526 - 0.09502 0.01933 0.01966

1.2 0.3593 0.3593 - 0.09001 - 0.09000 0.02846 0.02879

1.4 0.3571 0.3570 - 0.08660 - 0.08660 0.03674 0.03707

1.6 0.3546 0.3545 - 0.08430 - 0.08430 0.04356 0.04389

1.8 0.3519 0.3518 - 0.08267 - 0.08267 0.04890 0.04925

2.0 0.3491 0.3490 - 0.08150 - 0.08150 0.05301 0.05337

* 

*C F  denotes closed-form solution ; F.E. signifies finite—element solution .
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Also , it is interesting to observe that there are only very slight differences
in Z~ and deflection in going from a single layer to a cross-ply laminate .

This is in contrast to the behavior of the polyester - rubber results and in

considerable contrast to ordinary materials (which, of course have Z,~ 0

for the single—layer case). The most pronounced change in going from the

single—layer to the two—layer case is the drastic decrease in Z~ for the

aramid-rubber.

It should be cautioned that in the case of the closed-form solution , de-

flections due to various sinusoidally distri buted l oadings cannot be super-

imposed for bimodulus-materia l plates. The reason superposition is not valid *

here is that the necessary conditions for homogeneity of neutral-surface loca-

tions are not valid under superposition conditions , since , in general

Zn 
= ~~~~~~~~~~ 

÷z(2~~~
2) (x,y) 

~ cons tant 

*

even though ~~~~ ~~~ ... for the various individua l Fourier components are

constants. However , the finite-element solution is not subject to these limi-

tations, since it provides for stepwise variation in neutral-surface location.

Fig. 1 shows results for both sinusoidally and uniformly distributed loadings.

Concluding Remarks

Both finite-element and closed-form solutions have been found for

thick, rectangular pl ates of single—layer and cross-ply laminates of bi-

modulus materials. Excellen t agreement was obtained , and thus the finite-
element formulation of this problem is considered to have been validated

* 
against an accurate benchmark. 
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The research reported here is currently being extended to (1) therma l

bending due to changes in rnidplane temperature and -in gradient through the

thickness , and (2) free vibration.
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Appendix A: Derivation of the Plate Stiffnesses for a Two-
• Layer Cross-Ply Laminate of Bimodulus Material

* In lami nates containing bimodulus materials, the results of evaluating

the integrals for the plate stiffnesses, Eqs. (5),are more complicated than

those for ordinary-material laminates , since the individual-layer plane-

stress-reduced stiffnesses depend upon the neutral-surface location. Here

we derive the expressions for the case of a two-layer, cross-ply laminate.

Each layer has the same thickness and the same bimodulus orthotropic elastic

properties with respect to the fiber direction . The bottom layer is denoted

as layer 1 , i.e. , s = 1 in 
~1~k~’ 

is oriented in the x direction , and occupies

the thickness—direction interval from z = 0 to z = h/2, where z is measured

position downward from the midplane. The top layer (~=2) is oriented in the

y direction and is located from z = - h/2 to z = 0. In the case considered ,

it is assumed that the upper portion of the top layer (9=2) is in compression

(k2 in 
~IJ k9~ 

in the fiber direction and that the lower portion of the top

layer is in tension (k=l), while the inner portion of the bottom layer (9=1)

is in compression (k=2) and the outer portion of this l ayer in tension (k=l).

Sumarizing, the four regions are as follows :

Fiber-Direction
Layer Region Tension or Compression

= 2 - h/2 to Z~y Compression (k=2)

2. = 2 Zfly to 0 Tension (kl )

9. = 1 0 to Znx Compression (k=2)

2. = 1 Znx to h/2 Tension (kl )

It is noted that it is assumed that the x-direction neutral-surface location
* 

‘ 0, while the y-dlrect on one (Z~y ) Is negative. 

~~~~~~~~~~~~~~~~~~~~~~ 
- •-~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~•_ _iii
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Thus, the integral for ~~ in Eqs. (5) is subdivided into four regions ,

in each of which the plane-stress reduced stiffnesses 
~ijk9 

are constant.

• ~~ 0 z,~ h/2

~~ = 

‘—h/2 ~IJ22 dz + 
~ ij1 2 dz + dz + J Q~~11 

dz

= (Q~~~ 
+ Q1~22

)(h/2) + 
~~ ij21 

- Qijii )Znx + (Q 1~22 

nx 

(A l )

Introducing Zx 
= znx/h and Zy = z~~/h~ one obtains

A 1~/h = + Q~~11
) + (Q~ 21- Q

~~11
)Z X + - Q~~12 )Z~ (A 2)

In similar fashion , the next two integrals in Eqs. (5) become

4B1~/h2 = (l/2)(Q 1~ 11 
— Q1~22

) + 2(Q1~21 
- Q1~11

)Z~ + 2(Q
~ 

— Q1~~~)Z~ (A3)

12D1~/h3 = (l/2XQ ~~11 
+ Q .. ) + 4(Q1~21 

- Q~~11 )Z~ + 4(Q1~21 
- Q

~~12
)Z
~ 

(A4)

The express ion for S
~~

/h is the same as for A 1~/h. Eq. (A2).

To apply Eqs. (A2)-(A4 ) to a single-layer plate with the fibers oriented

in the x direction , it is necessary to merely set Z~ = 0. In deriving these

equations , it was assumed that Z,~ > 0 and Z~, < 0. In the event that the final

results obtained for Z~ and Z~ did not meet these conditions , obviously Eqs.
(A2)—(A4) would not be valld,and it would become necessary to investigate

another of the other three possible cases:

• Z
~~

> O a n d Z
~~

> O

• Z
~~~

O a n d Z
~~

< 0

Zx~ .O a n d Zy~ .O

~~~~~~~~~ J _ 
~~~~~~~~ .iii ~~~~~ 
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Fortunately, however , in all of the static probl ems treated here, the

conditions for the case derived in this appendix are satisfied.

Appendix B: Reduction ofClosed-Form Solution for Singl e-
Layer Transversely Isotropic Material

• In order to obtain simple, concise expressions for the neutral—surface

location and the deflection, the closed-form equations given in the body of

the paper are reduced to the special case of a square plate made of a trans-

• versely isotropic bimodulus material with an inpiane Poisson ’s ratio of zero.

Then

A 11 = A22 = A , A 12 = 0, A66 = A/2

811 = B22 = B, B12 = 0, 866 = B/2
(Bi)

D11 D22 0, 012 0, D66 D/2

S~,= S 55 = S , S45 = O

Now Eqs. (15) reduce to the following , since B = a:

C11 = (3/2)Aa 2, C12 (1/2)Act2, C13 = 0

C1~ = (l/2)Ba 2, C15 (3/2)Bct2, C~1 
= C1,~,

C22 = C11, C23 = 0, C~ = C15 , C25 = C1~, (B2)

C33 = 2K2Sct2, C314 = K2Sa , C35 = C314,

C,~ = (3/2)0a2 + K2S, C~5 
= (1/2)0a2, C55 = ~~ I-

-
• The biaxial syninetry of this special case requires

b * a , B a , V Z U ,  Y = X , ZnX ZnY Zn (B3)

Using Eqs. (B2) and (B3) in the first two of Eqs. (14), one finds that

• . for this special case

znx Zfly B/A Zn (84) • 4
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Using the fourth equation of Eqs. (14), one obtains

- 
- K2SaX/W — 2(D_BZ~)ctZ + K~S 

B5,

It is noted that the bending slope vanishes for both S 0 and 1/S = 0.

Finally, the third of Eqs. (14) yields

W = 4(D_BZn)&~ 
[1 + 2(D_Bzn

)(a2/K2S)] (B6)

It is seen that the quantity in front of the first bracket on the right side

of Eq. (B6) is equal to the deflection of a thin isotropic plate . The second

term inside the brackets is the fractiona l increase in deflection due to

thickness—shear deformation , which obviously increases as G
~ 

is decreased .

The quantity D
~

Bzn is the so-called reduced stiffness, first obtained for

laminated , isotropic thin plates by Pister15 .

For the present case, Eqs. (A2)-(A4) become

• A/h = + Z~Q , 4B/h2 = - (l/2)AQ (l-4Z2 )
(B7)

120/h3 = + 4Z3~Q

Here
= 2

~~~~~t
) - (88) H

Combining Eqs. (B4) and (B7), one obtains the following quadratic

express ion for Z:

Z = -(~/~Q) + [(~/AQ)
2 

- (l/4)]½ (B9)

Al so

S/h (l/2)(G
~~
+G
~t

) + Z(G zc _G
zt) (B l O)

11
~~ L ~~~~~~
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Appendix C: Method of Estimating Transverse-Thickness
Shear Moduli

In the tests reported by Patel et al. 3,only inplane compliances were

measured . Thus , it is necessary to estimate the values for the thickness-

shear modu li , which are needed for the thick-plate analysis.

It is believed to be a reasonable engineering assumption to assume

that an indiv idual composite-material layer is transversely isotropic with

the plane of isotropy bei ng the cross-sectional plane , i.e., the plane normal

to the fibers . Thus , it follows that the longitudinal -thickness shear modulus

(G13
) is equal to the inpiane (longitud i nal-transverse) shear modulus (G17).

Estimation of the other thickness-shear modulus is more complicated . One

can use the well-know n isotropic relation for the transverse-thickness shear

modulus G23 in terms of the thickness Young ’s modulus E3 and transverse-

thickness Poisson ’s ratio v 23 provided the latter two quantities are known :

G
2 3 k  

= E3k/[2(l+V 23k )] (Cl)

In view of the transverse-isotropy assumption mentioned above , it can

be assumed that E3k = E2k~ 
which was obtained from the inpiane tests.

Foye’6 presented a relation for 
~23 which can be rewritten in the

following form, which is more convenient for the present purpose:

[(v /E) - (v /E )]v( l-v )
v~~~I, — v  I.~ 1_ 22 12 V V

Em
(l_V

fT Ef Vf 
- 

Em Ef

• It is noted that Ref. 3 provided data for Ef~ Em~ 
and Vf. It is

reasonable to use a value of 0.499 for Vm of rubber. Thus , the only unknown

• quantity on the right side of Eq. (C2) is v~~, which could be computed from

____ 2--~~~~~~~~~ ~~~~~~~~~~ -* ~~~ -~~~~~~--~~~~~~~~~~~~~ •:
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• the following rule-of-mixtures expression for which is known to be

very accurate for polymer-matrix composites :

V
12k 

= V fkVf +

The rule-of-mixtures expression for the longitudinal Young ’s modulus

• is also known to be accurate for polymer-matrix composites :

Elk = EfkVf + E ( l ~Vf) (C4)

Unfortunately, however, for the data of Ref. 3, the measured va l ues

of E1t (tension) were higher than predicted by Eq. (C4). Thus , it was de-

cided to use Eq. (C4) to obtain an effective fiber volume fraction Vf~ and

then to use this effective value to predict Efc (coippression ) and vft and

‘~fc~ 
However, using either Vf or Vf in Eq. (C3), one obtains negative v ft

and vft va l ues, which are not reasonable physically. Thus , it was assumed

that due to the loose nature of the cord , that it was not restrained by the

matrix. Thus , instead of obtaining vfk from Eq. (C3), it was obtained from

V fk = v l2k/V; (C 5)

Sample calculati ons for aramid—rubber in compression are as follows .

From Eq. (C4) for k = t:

= (E lt
_E

m )/(Eft
_E
m) 

= (3.58 - 0.0080)/(24.8 - 0.0080 ) = 0.144

Then, using Eq. (C4) for k =

Efc ~~‘c 
Em(l-V;)]/V; = [0.00120 - O.0080(0.856fl/0.144

= 0.0358 GPa

IV ~~~~~~~~~~ - *-- - 
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From Eq. (C5) with k = c ,

*

‘
~fc 

v j~c
/V f 0.205/0.144 = 1.42

Using Eq. (C2), one obtains = 0 .202

Finally, from Eq. (Cl), G
~~ 

= 0.00499 GPa
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~~ mixed finite-element analysis is presented for static behavior of rectangu-lar plates having finite transverse shear moduli and different elastic pro-
perties depending upon whether or not the fiber-direction strains are tensile
or compressive. As a benchmark to evaluate the validity and accuracy of the
finite—element analysis, a closed-form solution Is presented for the particu-
lar case of an unsyninetric-cross-ply plate having freely supported edges and
subjected to a sinusoidally distributed normal-pressure loading.
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